

Doc. No. SY_IDD_1085s

HD Radio™ Air Interface
Design Description –

Program Service Data
Transport

Rev. C
February 07, 2005

Doc. No. SY_IDD_1085s

TRADEMARKS
The iBiquity Digital logo and “iBiquity Digital” are registered trademarks of iBiquity Digital Corporation.
“iBiquity”, “HD Radio”, “HD BML”, and the HD Radio logo are trademarks of iBiquity Digital Corporation.
All other trademarks, whether claimed or registered, are the exclusive property of their respective owners.

iBiquity Digital Corporation
8865 Stanford Boulevard
Suite 202
Columbia, MD 21045
410–872–1530 (Phone)
410–872–1531 (FAX)
info@ibiquity.com

 Air IDD – Program Service Data Transport

Doc. No. SY_IDD_1085s i Rev. C

Table of Contents

Contents
1 SCOPE ..1

1.1 System Overview...1
1.2 Document Overview..1

2 REFERENCED DOCUMENTS ...2
3 ABBREVIATIONS AND CONVENTIONS ...3

3.1 Abbreviations and Acronyms ..3
3.2 Presentation Conventions ..3

4 OVERVIEW...4
4.1 Introduction ...4
4.2 Audio Transport Protocol ..4
4.3 ID3 Tag Generation ...4
4.4 Packet Transport ..5

5 PROGRAM SERVICE DATA TRANSPORT...6
5.1 Packet Encapsulation - PDU Generation ...6
5.1.1 PDU Format ..6
5.1.2 Transparency ...7
5.1.3 Idle Pattern ..7
5.1.4 Application of RFC-1662 for the HD Radio system ...7
5.2 Default PSD Packet Definition..8
5.2.1 Port Number ..8
5.2.2 Sequence Number ...8
5.2.3 Packet Payload ..8
5.3 PSD PDU – Example...8

Appendix A RFC -1662

List of Figures
Figure 4-1 Program Service Data Transport – High Level View...4
Figure 5-1 PSD PDU Example ..9

List of Tables
Table 5-1 PSD PDU Field Definition ..6
Table 5-2 Default Packet Definition ...8

 Air IDD – Program Service Data Transport

Doc. No. SY_IDD_1085s 1 Rev. C

1 Scope

1.1 System Overview

The iBiquity Digital Corporation HD Radio™ system is designed to permit a smooth evolution from
current analog amplitude modulation (AM) and frequency modulation (FM) radio to a fully digital in-
band on-channel (IBOC) system. This system delivers digital audio and data services to mobile, portable,
and fixed receivers from terrestrial transmitters in the existing medium frequency (MF) and very high
frequency (VHF) radio bands. Broadcasters may continue to transmit analog AM and FM simultaneously
with the new, higher-quality and more robust digital signals, allowing themselves and their listeners to
convert from analog to digital radio while maintaining their current frequency allocations.

1.2 Document Overview

This document defines the Program Service Data (PSD) transport. It describes the PSD packet
encapsulation process for use by the audio transport. A specific hardware and software implementation is
not described.

 Air IDD – Program Service Data Transport

Doc. No. SY_IDD_1085s 2 Rev. C

2 Referenced Documents

[1] iBiquity Digital Corporation, “HD Radio™ Air Interface Design Description –Program Service
Data,” Doc. No. SY_IDD_1028s, Revision C.

[2] iBiquity Digital Corporation, “HD Radio™ Air Interface Design Description –Audio Transport
Protocol,” Doc. No. SY_IDD_1017s, Revision E.

[3] iBiquity Digital Corporation, “HD Radio™ Air Interface Design Description - Layer 1 FM,” Doc.
No. SY_IDD_1011s, Revision D.

[4] iBiquity Digital Corporation, “HD Radio™ Air Interface Design Description – Layer 1 AM,”
Doc. No. SY_IDD_1012s, Revision D.

[5] RFC 1662 “PPP in HDLC-like Framing”, Network Working Group
http://www.ietf.org/rfc/rfc1662.txt

 Air IDD – Program Service Data Transport

Doc. No. SY_IDD_1085s 3 Rev. C

3 Abbreviations and Conventions

3.1 Abbreviations and Acronyms
CRC Cyclic Redundancy Check
FCS Frame Check Sequence
HDLC High Level Data Link Control
IETF Internet Engineering Task Force
LCP Link Control Protocol
OTA Over the Air
PPP Point-to-Point Protocol
PSD Program Service Data
PDU Protocol Data Unit
RFC Request For Comments
SEQ Sequence Number

3.2 Presentation Conventions

Unless otherwise noted, the following conventions apply to this document:

• All vectors are indexed starting with 0.
• The element of a vector with the lowest index is considered to be first.
• In drawings and tables, the leftmost bit is considered to occur first in time.
• Bit 0 of a byte or word is considered the least significant bit.
• When presenting the dimensions of a matrix, the number of rows is given first (e.g., an n x m

matrix has n rows and m columns).
• In timing diagrams, earliest time is on the left.
• Binary numbers are presented with the most significant bit having the highest index.
• In representations of binary numbers, the least significant bit is on the right.
• In little-endian format, a multi-byte value is stored in memory from the lowest byte (the "little

end") to the highest byte. For example, all 2-byte messages are little-endian where the upper and
lower bytes are swapped.

 Air IDD – Program Service Data Transport

Doc. No. SY_IDD_1085s 4 Rev. C

4 Overview

4.1 Introduction

Program Service Data (PSD) consists of ID3 tags which are transmitted as data packets [1]. The PSD
transport provides the packet transport mechanism for the PSD. Data packets are encapsulated as a byte
stream for transmission and recovery at the receiver. The encapsulated packets referred to as PSD PDUs
(Protocol Data Units) are transmitted within the encoded audio stream. The packet transport link for the
HD Radio system is described in Section 5. On the receiver side, packets are recovered from the encoded
audio stream and the ID3 payloads are made available for use on the receiver.

Figure 4-1 shows the transport of PSD (ID3 tags) from the transmit side to the receive side.

Packet
Encapsulation

P
S

D
 P

D
U

s

Audio Transport

 Encoded
audio stream

Audio Transport

Encoded audio
stream

(Transport over L2/L1)

Packet Recovery

P
S

D
 P

D
U

s

(Byte Stream)

PSD
(ID3 tags)

PSD
(ID3 tags)

Figure 4-1 Program Service Data Transport – High Level View

4.2 Audio Transport Protocol

The Audio Transport obtains the PSD byte streams, if present, and multiplexes them with the encoded
audio packets. The PSD streams are continually repeated throughout the transmission. Once the buffer is
filled with content, the system repeatedly transmits the content until the buffers are updated. The
transmission rate depends on the available bandwidth and the length of the message. This multiplexing of
each PSD byte within the audio stream is handled internally by the Audio Transport. Thus the output
streams from the Audio Transport contain both the compressed audio and the PSD byte streams. Refer to
[2] for a detailed description of the Audio Transport.

4.3 ID3 Tag Generation

The ID3 tags are generated from the Service Interface and provided along with the audio content. Refer
to [1] for a detailed definition of the use of ID3 tags in the HD Radio system and the ID3 tag fields
supported by the HD Radio system.

 Air IDD – Program Service Data Transport

Doc. No. SY_IDD_1085s 5 Rev. C

4.4 Packet Transport

Packet transport for the PSD is provided by the PSD Transport. At a high level it receives an input packet
from a higher layer, translates it internally to an over the air (OTA) packet in a robust and efficient
manner to its peer at a receiver, where it is translated to an output packet and sent to higher level peer.

The PSD Transport also supplies the functions of packet encapsulation (at the transmitter) and packet
recovery (at the receiver). In addition to payload transport the PSD packet structure also provides:

• Addressing schemes to allow association of packets to services.

• Sequence control to assure packet order preservation and detection.

• Error detection information to allow reliable packet detection.

The PSD Packet Transport is described in Section 5.

 Air IDD – Program Service Data Transport

Doc. No. SY_IDD_1085s 6 Rev. C

5 Program Service Data Transport

The PSD Transport provides a generic and reliable packet transport for implementing data services. This
section describes the PSD Transport and PSD PDU generation.

5.1 Packet Encapsulation - PDU Generation

The packet encapsulation used by the PSD Transport follows the HDLC-like framing employed by the
Point-to-Point Protocol (PPP) as standardized by the IETF in RFC-1662, “PPP in HDLC-Like Framing”
[5]. The following sections describe how the HDLC-like framing of PPP has been adapted for the HD
Radio system.

The HDLC-like framing allows encapsulation of a packet within a byte stream, referred to as PSD PDU
that may be sent in segments of arbitrary size (e.g., in each modem frame). Reconstruction of the packet
requires only concatenation of the segments. Depending on their size, a single modem frame may contain
multiple such encapsulated packets or a single portion of a large packet.

A modem frame refers to a Layer 1 frame base on the size of the logical channels as defined in [3],[4].

5.1.1 PDU Format

A PSD PDU is contained in an HDLC-like frame delimited by Flags as shown in Table 5-1 below.

Table 5-1 PSD PDU Field Definition

 Field Bytes Description
Flag 1 0x7E (Start of PDU)

Protocol Field 1 Protocol Field = 0x21 for the PSD packet format.

Information As
required

PSD packets as defined in Subsection 5.2

FCS 2 A 16-bit Frame Check Sequence is used for error
detection – in little-endian format.

Flag 1 0x7E (Start of next PDU)

This frame structure follows that described in RFC-1662, Section 3.1 [5] except for the following
changes:

1. The Address and Control fields provide no useful function in the HD Radio system and have been
eliminated in the interest of efficiency.

2. The Protocol Field is always 8-bits and has a value less than 0x80 (Greater values are reserved for
future expansion).

3. No padding is used.

4. The Frame Check Sequence is always 16-bits for Protocol Fields complying with item 2.

5.1.1.1 Flag Delimiters

Each HDLC-like frame is delimited by Flag bytes having the value 0x7E. The Flag delimiters serve the
following purposes:

• Only one byte is needed to delimit a packet of any length.

• A false Flag due to a payload error results only in the loss of a single frame (packet).

 Air IDD – Program Service Data Transport

Doc. No. SY_IDD_1085s 7 Rev. C

• A corrupted Flag cannot cause a loss of more than two frames (packets).

A single modem frame may consist of partial or multiple instances of such HDLC-like frames. The flag
bytes help in identifying and delimiting each frame in such instances.

5.1.1.2 Protocol Field
The Protocol Field is used to allow for multiple packet formats to be supported. For PSD, the default
protocol (0x21) is used.
On receipt, any frame with an unrecognized Protocol Field should be discarded by the Audio Transport.
This allows new packet protocols to be added in the future while retaining backward compatibility with
older receivers.

5.1.1.3 Information

The Information field contains PSD packets as defined in Subsection 5.2.

5.1.1.4 Frame Check Sequence
The Frame Check Sequence (FCS) uses a 16-bit CRC. The FCS is generated using the Protocol Field and
the Information data (refer to Table 5-2) in accordance with RFC-1662, Section C.1 [5]. Refer to [5] for a
definition for FCS. The FCS is used in little-endian format.

5.1.2 Transparency

To prevent a value of 0x7E occurring in the data from being read as a Flag, an escape mechanism is
provided to replace bytes with a special meaning with alternate values. This is done by replacing the byte
with two bytes consisting of the control escape byte 0x7D followed by the original byte exclusive-or’ed
with hexadecimal 0x20 (Refer to RFC-1662, Section 4.2 [5]). The only two values that need to be
escaped are:

0x7E which is encoded as 0x7D, 0x5E, (Flag Sequence)

0x7D which is encoded as 0x7D, 0x5D (Control Escape)

Since the escape mechanism requires two bytes to encode a single byte it reduces efficiently slightly -
about 1% for a packet with a random data payload. Since the Flag and Control Escape characters
correspond to the characters “~” and “}” which seldom appear in ID3 data the efficiency loss on PSD
packets is much less than 1%.

5.1.3 Idle Pattern

When no packet data is available to send, an idle pattern of repeating Flags is sent. This is equivalent to a
stream of zero length frames.

5.1.4 Application of RFC-1662 for the HD Radio system

Many of the features defined in RFC-1662, “PPP in HDLC-like Framing” are inapplicable or unnecessary
for the HD Radio system. In particular, the following sections of the RFC are not applicable to the HD
Radio system:

• Sections 4.4.2, 4.5.2 and 5 – All streams used for packet transport in the HD Radio system are
octet-synchronous.

• Section 6 – No asynchronous to synchronous conversion is used.

• Section 7 – The Flag Sequence and Control Escape are the only control flags used in the HD
Radio system. Negotiation of additional control characters is not possible and not required.

• Section A – LCP negotiations are not possible and are not used.

 Air IDD – Program Service Data Transport

Doc. No. SY_IDD_1085s 8 Rev. C

• Section B – The PPP frames identified are not valid frames in the HD Radio system.

5.2 Default PSD Packet Definition

Program Service Data uses the default packet format shown in Table 5-2 below.

Table 5-2 Default Packet Definition

 Field
Size
(bytes) Description

PORT 2 Port number for addressing a particular service – in little-endian
format.

SEQ 2 Sequence number increments by 1 on each packet sent. – in
little-endian format.

Payload[] 1-1024 Payload length is variable up to 1024 bytes.

The following subsections describe the corresponding fields, and how they are used for PSD.

5.2.1 Port Number

Port numbers are used to allow packets to be directed to specific applications. Port numbers 0x5100 is
used for Main Program Service Data and 0x5201 through 0x5208 are reserved for future PSD
applications. The Port number is used in little-endian format.

5.2.2 Sequence Number

At the transmitter, each packet sent to a given PORT has a sequence number one greater than the previous
one. This allows for packet order to be verified at the receiver, and for lost packets to be detected through
missing sequence numbers. The sequence number is used in little-endian format.

5.2.3 Packet Payload

The packet payloads are of variable length up to 1024 bytes. For PSD, the payload data is an ID3 tag.
Large packets may be transmitted over multiple modem frames. Please refer to [2] for the MPS Data
rates.

5.3 PSD PDU – Example

Figure 5-1 below shows an example of a PSD PDU. The following elements are noted in the figure:

1. The beginning of the frame indicated by a Flag Sequence (0x7E).
2. The first byte of the frame is the Protocol ID field which is set to 0x21, indicating the default

packet format.
3. The next two bytes contain the Port number, 0x5100, in little-endian format.
4. A two byte Sequence Number in little-endian format follows next. The value of 0x0000 is

meaningful only with respect to the sequence numbers of the previous and subsequent packets
sent to port 0x5100.

5. The payload is an ID3 tag that encodes the song title (“Analog Blues”), the artist (“J. Q. Public”),
and the album name (“The Lost Sessions”).

6. The payload is followed by a two byte Frame Check Sequence in little-endian format. It is
computed over all bytes from the Protocol ID field through the last byte of the payload.

7. The end of frame is indicated by a Flag Sequence (0x7E).

Note: The byte stream shown could arrive as segments of arbitrary size so long as the byte order is
preserved. Lost segments will result in short packets that fail FCS checking.

 Air IDD – Program Service Data Transport

Doc. No. SY_IDD_1085s 9 Rev. C

Figure 5-1 PSD PDU Example

7e 7e 21 00 51 00 00 49 44 33 03 00 00 00 00 00 ~~!.Q..ID3......

4a 54 49 54 32 00 00 00 0d 00 00 00 41 6e 61 6c JTIT2.......Anal

6f 67 20 42 6c 75 65 73 54 50 45 31 00 00 00 0d og BluesTPE1....

00 00 00 4a 2e 20 51 2e 20 50 75 62 6c 69 63 54 ...J. Q. PublicT

41 4c 42 00 00 00 12 00 00 00 54 68 65 20 4c 6f ALB.......The Lo

73 74 20 53 65 73 73 69 6f 6e 73 f5 27 7e 7e 7e st Sessionsõ'~~~

(1) Flag starts frame (start of PDU)

(2) Protocol Field

(3) Port = 0x5100

(4) Sequence number

(6) Frame Check Sequence
(5)

(7) Flag ends frame (Start of
next PDU)

(5) Payload

Doc. No. SY_IDD_1085s Rev. C

HD Radio™ Air Interface
Design Description –

Program Service Data
Transport

Appendix A

 RFC-1662

Doc. No. SY_IDD_1085s A-1 Rev. C

RFC-1662

Network Working Group W. Simpson, Editor
Request for Comments: 1662 Daydreamer
STD: 51 July 1994
Obsoletes: 1549
Category: Standards Track

 PPP in HDLC-like Framing

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Abstract

 The Point-to-Point Protocol (PPP) [1] provides a standard method for
 transporting multi-protocol datagrams over point-to-point links.

 This document describes the use of HDLC-like framing for PPP
 encapsulated packets.

Table of Contents

 1. Introduction
 1.1 Specification of Requirements
 1.2 Terminology

 2. Physical Layer Requirements

 3. The Data Link Layer
 3.1 Frame Format
 3.2 Modification of the Basic Frame

 4. Octet-stuffed framing
 4.1 Flag Sequence
 4.2 Transparency
 4.3 Invalid Frames
 4.4 Time Fill
 4.4.1 Octet-synchronous
 4.4.2 Asynchronous
 4.5 Transmission Considerations
 4.5.1 Octet-synchronous
 4.5.2 Asynchronous

 5. Bit-stuffed framing
 5.1 Flag Sequence
 5.2 Transparency
 5.3 Invalid Frames
 5.4 Time Fill
 5.5 Transmission Considerations

 RFC-1662

Doc. No. SY_IDD_1085s A-2 Rev. C

 6. Asynchronous to Synchronous Conversion

 7. Additional LCP Configuration Options
 7.1 Async-Control-Character-Map (ACCM)

 APPENDICES
 A. Recommended LCP Options
 B. Automatic Recognition of PPP Frames
 C. Fast Frame Check Sequence (FCS) Implementation
 C.1 FCS table generator
 C.2 16-bit FCS Computation Method
 C.3 32-bit FCS Computation Method

 SECURITY CONSIDERATIONS
 REFERENCES
 ACKNOWLEDGEMENTS
 CHAIR'S ADDRESS
 EDITOR'S ADDRESS

1. Introduction

 This specification provides for framing over both bit-oriented and
 octet-oriented synchronous links, and asynchronous links with 8 bits
 of data and no parity. These links MUST be full-duplex, but MAY be
 either dedicated or circuit-switched.

 An escape mechanism is specified to allow control data such as
 XON/XOFF to be transmitted transparently over the link, and to remove
 spurious control data which may be injected into the link by
 intervening hardware and software.

 Some protocols expect error free transmission, and either provide
 error detection only on a conditional basis, or do not provide it at
 all. PPP uses the HDLC Frame Check Sequence for error detection.
 This is commonly available in hardware implementations, and a
 software implementation is provided.

1.1. Specification of Requirements

 In this document, several words are used to signify the requirements
 of the specification. These words are often capitalized.

 MUST This word, or the adjective "required", means that the
 definition is an absolute requirement of the specification.

 MUST NOT This phrase means that the definition is an absolute
 prohibition of the specification.

 SHOULD This word, or the adjective "recommended", means that there
 may exist valid reasons in particular circumstances to
 ignore this item, but the full implications must be
 understood and carefully weighed before choosing a
 different course.

 MAY This word, or the adjective "optional", means that this
 item is one of an allowed set of alternatives. An
 implementation which does not include this option MUST be

 RFC-1662

Doc. No. SY_IDD_1085s A-3 Rev. C

 prepared to interoperate with another implementation which
 does include the option.

1.2. Terminology

 This document frequently uses the following terms:

 datagram The unit of transmission in the network layer (such as IP).
 A datagram may be encapsulated in one or more packets
 passed to the data link layer.

 frame The unit of transmission at the data link layer. A frame
 may include a header and/or a trailer, along with some
 number of units of data.

 packet The basic unit of encapsulation, which is passed across the
 interface between the network layer and the data link
 layer. A packet is usually mapped to a frame; the
 exceptions are when data link layer fragmentation is being
 performed, or when multiple packets are incorporated into a
 single frame.

 peer The other end of the point-to-point link.

 silently discard
 The implementation discards the packet without further
 processing. The implementation SHOULD provide the
 capability of logging the error, including the contents of
 the silently discarded packet, and SHOULD record the event
 in a statistics counter.

2. Physical Layer Requirements

 PPP is capable of operating across most DTE/DCE interfaces (such as,
 EIA RS-232-E, EIA RS-422, and CCITT V.35). The only absolute
 requirement imposed by PPP is the provision of a full-duplex circuit,
 either dedicated or circuit-switched, which can operate in either an
 asynchronous (start/stop), bit-synchronous, or octet-synchronous
 mode, transparent to PPP Data Link Layer frames.

 Interface Format

 PPP presents an octet interface to the physical layer. There is
 no provision for sub-octets to be supplied or accepted.

 Transmission Rate

 PPP does not impose any restrictions regarding transmission rate,
 other than that of the particular DTE/DCE interface.

 Control Signals

 PPP does not require the use of control signals, such as Request
 To Send (RTS), Clear To Send (CTS), Data Carrier Detect (DCD), and
 Data Terminal Ready (DTR).

 When available, using such signals can allow greater functionality

 RFC-1662

Doc. No. SY_IDD_1085s A-4 Rev. C

 and performance. In particular, such signals SHOULD be used to
 signal the Up and Down events in the LCP Option Negotiation
 Automaton [1]. When such signals are not available, the
 implementation MUST signal the Up event to LCP upon
 initialization, and SHOULD NOT signal the Down event.

 Because signalling is not required, the physical layer MAY be
 decoupled from the data link layer, hiding the transient details
 of the physical transport. This has implications for mobility in
 cellular radio networks, and other rapidly switching links.

 When moving from cell to cell within the same zone, an
 implementation MAY choose to treat the entire zone as a single
 link, even though transmission is switched among several
 frequencies. The link is considered to be with the central
 control unit for the zone, rather than the individual cell
 transceivers. However, the link SHOULD re-establish its
 configuration whenever the link is switched to a different
 administration.

 Due to the bursty nature of data traffic, some implementations
 have choosen to disconnect the physical layer during periods of

 inactivity, and reconnect when traffic resumes, without informing
 the data link layer. Robust implementations should avoid using
 this trick over-zealously, since the price for decreased setup
 latency is decreased security. Implementations SHOULD signal the
 Down event whenever "significant time" has elapsed since the link
 was disconnected. The value for "significant time" is a matter of
 considerable debate, and is based on the tariffs, call setup
 times, and security concerns of the installation.

3. The Data Link Layer

 PPP uses the principles described in ISO 3309-1979 HDLC frame
 structure, most recently the fourth edition 3309:1991 [2], which
 specifies modifications to allow HDLC use in asynchronous
 environments.

 The PPP control procedures use the Control field encodings described
 in ISO 4335-1979 HDLC elements of procedures, most recently the
 fourth edition 4335:1991 [4].

 This should not be construed to indicate that every feature of the
 above recommendations are included in PPP. Each feature included
 is explicitly described in the following sections.

 To remain consistent with standard Internet practice, and avoid
 confusion for people used to reading RFCs, all binary numbers in the
 following descriptions are in Most Significant Bit to Least
 Significant Bit order, reading from left to right, unless otherwise
 indicated. Note that this is contrary to standard ISO and CCITT
 practice which orders bits as transmitted (network bit order). Keep
 this in mind when comparing this document with the international
 standards documents.

3.1. Frame Format

 RFC-1662

Doc. No. SY_IDD_1085s A-5 Rev. C

 A summary of the PPP HDLC-like frame structure is shown below. This
 figure does not include bits inserted for synchronization (such as
 start and stop bits for asynchronous links), nor any bits or octets
 inserted for transparency. The fields are transmitted from left to
 right.

 +----------+----------+----------+
 | Flag | Address | Control |
 | 01111110 | 11111111 | 00000011 |
 +----------+----------+----------+
 +----------+-------------+---------+
 | Protocol | Information | Padding |
 | 8/16 bits| * | * |
 +----------+-------------+---------+
 +----------+----------+-----------------
 | FCS | Flag | Inter-frame Fill
 |16/32 bits| 01111110 | or next Address
 +----------+----------+-----------------

 The Protocol, Information and Padding fields are described in the
 Point-to-Point Protocol Encapsulation [1].

 Flag Sequence

 Each frame begins and ends with a Flag Sequence, which is the
 binary sequence 01111110 (hexadecimal 0x7e). All implementations
 continuously check for this flag, which is used for frame
 synchronization.

 Only one Flag Sequence is required between two frames. Two
 consecutive Flag Sequences constitute an empty frame, which is
 silently discarded, and not counted as a FCS error.

 Address Field

 The Address field is a single octet, which contains the binary
 sequence 11111111 (hexadecimal 0xff), the All-Stations address.
 Individual station addresses are not assigned. The All-Stations
 address MUST always be recognized and received.

 The use of other address lengths and values may be defined at a
 later time, or by prior agreement. Frames with unrecognized
 Addresses SHOULD be silently discarded.

 Control Field

 The Control field is a single octet, which contains the binary
 sequence 00000011 (hexadecimal 0x03), the Unnumbered Information
 (UI) command with the Poll/Final (P/F) bit set to zero.

 The use of other Control field values may be defined at a later
 time, or by prior agreement. Frames with unrecognized Control
 field values SHOULD be silently discarded.

 Frame Check Sequence (FCS) Field

 RFC-1662

Doc. No. SY_IDD_1085s A-6 Rev. C

 The Frame Check Sequence field defaults to 16 bits (two octets).
 The FCS is transmitted least significant octet first, which
 contains the coefficient of the highest term.

 A 32-bit (four octet) FCS is also defined. Its use may be
 negotiated as described in "PPP LCP Extensions" [5].

 The use of other FCS lengths may be defined at a later time, or by
 prior agreement.

 The FCS field is calculated over all bits of the Address, Control,
 Protocol, Information and Padding fields, not including any start
 and stop bits (asynchronous) nor any bits (synchronous) or octets
 (asynchronous or synchronous) inserted for transparency. This
 also does not include the Flag Sequences nor the FCS field itself.

 When octets are received which are flagged in the Async-
 Control-Character-Map, they are discarded before calculating
 the FCS.

 For more information on the specification of the FCS, see the
 Appendices.

 The end of the Information and Padding fields is found by locating
 the closing Flag Sequence and removing the Frame Check Sequence
 field.

3.2. Modification of the Basic Frame

 The Link Control Protocol can negotiate modifications to the standard
 HDLC-like frame structure. However, modified frames will always be
 clearly distinguishable from standard frames.

 Address-and-Control-Field-Compression

 When using the standard HDLC-like framing, the Address and Control
 fields contain the hexadecimal values 0xff and 0x03 respectively.
 When other Address or Control field values are in use, Address-
 and-Control-Field-Compression MUST NOT be negotiated.

 On transmission, compressed Address and Control fields are simply
 omitted.

 On reception, the Address and Control fields are decompressed by
 examining the first two octets. If they contain the values 0xff
 and 0x03, they are assumed to be the Address and Control fields.
 If not, it is assumed that the fields were compressed and were not
 transmitted.

 By definition, the first octet of a two octet Protocol field
 will never be 0xff (since it is not even). The Protocol field
 value 0x00ff is not allowed (reserved) to avoid ambiguity when
 Protocol-Field-Compression is enabled and the first Information
 field octet is 0x03.

4. Octet-stuffed framing

 RFC-1662

Doc. No. SY_IDD_1085s A-7 Rev. C

 This chapter summarizes the use of HDLC-like framing with 8-bit
 asynchronous and octet-synchronous links.

4.1. Flag Sequence

 The Flag Sequence indicates the beginning or end of a frame. The
 octet stream is examined on an octet-by-octet basis for the value
 01111110 (hexadecimal 0x7e).

4.2. Transparency

 An octet stuffing procedure is used. The Control Escape octet is
 defined as binary 01111101 (hexadecimal 0x7d), most significant bit
 first.

 As a minimum, sending implementations MUST escape the Flag Sequence
 and Control Escape octets.

 After FCS computation, the transmitter examines the entire frame
 between the two Flag Sequences. Each Flag Sequence, Control Escape
 octet, and any octet which is flagged in the sending Async-Control-
 Character-Map (ACCM), is replaced by a two octet sequence consisting
 of the Control Escape octet followed by the original octet
 exclusive-or'd with hexadecimal 0x20.

 This is bit 5 complemented, where the bit positions are numbered
 76543210 (the 6th bit as used in ISO numbered 87654321 -- BEWARE
 when comparing documents).

 Receiving implementations MUST correctly process all Control Escape
 sequences.

 On reception, prior to FCS computation, each octet with value less
 than hexadecimal 0x20 is checked. If it is flagged in the receiving
 ACCM, it is simply removed (it may have been inserted by intervening
 data communications equipment). Each Control Escape octet is also
 removed, and the following octet is exclusive-or'd with hexadecimal
 0x20, unless it is the Flag Sequence (which aborts a frame).

 A few examples may make this more clear. Escaped data is transmitted
 on the link as follows:

 0x7e is encoded as 0x7d, 0x5e. (Flag Sequence)
 0x7d is encoded as 0x7d, 0x5d. (Control Escape)
 0x03 is encoded as 0x7d, 0x23. (ETX)

 Some modems with software flow control may intercept outgoing DC1 and
 DC3 ignoring the 8th (parity) bit. This data would be transmitted on
 the link as follows:

 0x11 is encoded as 0x7d, 0x31. (XON)
 0x13 is encoded as 0x7d, 0x33. (XOFF)
 0x91 is encoded as 0x7d, 0xb1. (XON with parity set)
 0x93 is encoded as 0x7d, 0xb3. (XOFF with parity set)

4.3. Invalid Frames

 RFC-1662

Doc. No. SY_IDD_1085s A-8 Rev. C

 Frames which are too short (less than 4 octets when using the 16-bit
 FCS), or which end with a Control Escape octet followed immediately
 by a closing Flag Sequence, or in which octet-framing is violated (by
 transmitting a "0" stop bit where a "1" bit is expected), are
 silently discarded, and not counted as a FCS error.

4.4. Time Fill

4.4.1. Octet-synchronous

 There is no provision for inter-octet time fill.

 The Flag Sequence MUST be transmitted during inter-frame time fill.

4.4.2. Asynchronous

 Inter-octet time fill MUST be accomplished by transmitting continuous
 "1" bits (mark-hold state).

 Inter-frame time fill can be viewed as extended inter-octet time
 fill. Doing so can save one octet for every frame, decreasing delay
 and increasing bandwidth. This is possible since a Flag Sequence may
 serve as both a frame end and a frame begin. After having received
 any frame, an idle receiver will always be in a frame begin state.

 Robust transmitters should avoid using this trick over-zealously,
 since the price for decreased delay is decreased reliability. Noisy
 links may cause the receiver to receive garbage characters and
 interpret them as part of an incoming frame. If the transmitter does
 not send a new opening Flag Sequence before sending the next frame,
 then that frame will be appended to the noise characters causing an
 invalid frame (with high reliability).

 It is suggested that implementations will achieve the best results by
 always sending an opening Flag Sequence if the new frame is not
 back-to-back with the last. Transmitters SHOULD send an open Flag
 Sequence whenever "appreciable time" has elapsed after the prior
 closing Flag Sequence. The maximum value for "appreciable time" is
 likely to be no greater than the typing rate of a slow typist, about
 1 second.

4.5. Transmission Considerations

4.5.1. Octet-synchronous

 The definition of various encodings and scrambling is the
 responsibility of the DTE/DCE equipment in use, and is outside the
 scope of this specification.

4.5.2. Asynchronous

 All octets are transmitted least significant bit first, with one
 start bit, eight bits of data, and one stop bit. There is no
 provision for seven bit asynchronous links.

5. Bit-stuffed framing

 RFC-1662

Doc. No. SY_IDD_1085s A-9 Rev. C

 This chapter summarizes the use of HDLC-like framing with bit-
 synchronous links.

5.1. Flag Sequence

 The Flag Sequence indicates the beginning or end of a frame, and is
 used for frame synchronization. The bit stream is examined on a
 bit-by-bit basis for the binary sequence 01111110 (hexadecimal 0x7e).

 The "shared zero mode" Flag Sequence "011111101111110" SHOULD NOT be
 used. When not avoidable, such an implementation MUST ensure that
 the first Flag Sequence detected (the end of the frame) is promptly
 communicated to the link layer. Use of the shared zero mode hinders
 interoperability with bit-synchronous to asynchronous and bit-
 synchronous to octet-synchronous converters.

5.2. Transparency

 After FCS computation, the transmitter examines the entire frame
 between the two Flag Sequences. A "0" bit is inserted after all
 sequences of five contiguous "1" bits (including the last 5 bits of
 the FCS) to ensure that a Flag Sequence is not simulated.

 On reception, prior to FCS computation, any "0" bit that directly
 follows five contiguous "1" bits is discarded.

5.3. Invalid Frames

 Frames which are too short (less than 4 octets when using the 16-bit
 FCS), or which end with a sequence of more than six "1" bits, are
 silently discarded, and not counted as a FCS error.

5.4. Time Fill

 There is no provision for inter-octet time fill.

 The Flag Sequence SHOULD be transmitted during inter-frame time fill.
 However, certain types of circuit-switched links require the use of

 mark idle (continuous ones), particularly those that calculate
 accounting based on periods of bit activity. When mark idle is used
 on a bit-synchronous link, the implementation MUST ensure at least 15
 consecutive "1" bits between Flags during the idle period, and that
 the Flag Sequence is always generated at the beginning of a frame
 after an idle period.

 This differs from practice in ISO 3309, which allows 7 to 14 bit
 mark idle.

5.5. Transmission Considerations

 All octets are transmitted least significant bit first.

 The definition of various encodings and scrambling is the
 responsibility of the DTE/DCE equipment in use, and is outside the
 scope of this specification.

 RFC-1662

Doc. No. SY_IDD_1085s A-10 Rev. C

 While PPP will operate without regard to the underlying
 representation of the bit stream, lack of standards for transmission
 will hinder interoperability as surely as lack of data link
 standards. At speeds of 56 Kbps through 2.0 Mbps, NRZ is currently
 most widely available, and on that basis is recommended as a default.

 When configuration of the encoding is allowed, NRZI is recommended as
 an alternative, because of its relative immunity to signal inversion
 configuration errors, and instances when it MAY allow connection
 without an expensive DSU/CSU. Unfortunately, NRZI encoding
 exacerbates the missing x1 factor of the 16-bit FCS, so that one
 error in 2**15 goes undetected (instead of one in 2**16), and triple
 errors are not detected. Therefore, when NRZI is in use, it is
 recommended that the 32-bit FCS be negotiated, which includes the x1
 factor.

 At higher speeds of up to 45 Mbps, some implementors have chosen the
 ANSI High Speed Synchronous Interface [HSSI]. While this experience
 is currently limited, implementors are encouraged to cooperate in
 choosing transmission encoding.

6. Asynchronous to Synchronous Conversion

 There may be some use of asynchronous-to-synchronous converters (some
 built into modems and cellular interfaces), resulting in an
 asynchronous PPP implementation on one end of a link and a
 synchronous implementation on the other. It is the responsibility of
 the converter to do all stuffing conversions during operation.

 To enable this functionality, synchronous PPP implementations MUST
 always respond to the Async-Control-Character-Map Configuration
 Option with the LCP Configure-Ack. However, acceptance of the
 Configuration Option does not imply that the synchronous
 implementation will do any ACCM mapping. Instead, all such octet
 mapping will be performed by the asynchronous-to-synchronous
 converter.

7. Additional LCP Configuration Options

 The Configuration Option format and basic options are already defined
 for LCP [1].

 Up-to-date values of the LCP Option Type field are specified in the
 most recent "Assigned Numbers" RFC [10]. This document concerns the
 following values:

 2 Async-Control-Character-Map

7.1. Async-Control-Character-Map (ACCM)

 Description

 This Configuration Option provides a method to negotiate the use
 of control character transparency on asynchronous links.

 Each end of the asynchronous link maintains two Async-Control-
 Character-Maps. The receiving ACCM is 32 bits, but the sending

 RFC-1662

Doc. No. SY_IDD_1085s A-11 Rev. C

 ACCM may be up to 256 bits. This results in four distinct ACCMs,
 two in each direction of the link.

 For asynchronous links, the default receiving ACCM is 0xffffffff.
 The default sending ACCM is 0xffffffff, plus the Control Escape
 and Flag Sequence characters themselves, plus whatever other
 outgoing characters are flagged (by prior configuration) as likely
 to be intercepted.

 For other types of links, the default value is 0, since there is
 no need for mapping.

 The default inclusion of all octets less than hexadecimal 0x20
 allows all ASCII control characters [6] excluding DEL (Delete)
 to be transparently communicated through all known data
 communications equipment.

 The transmitter MAY also send octets with values in the range 0x40
 through 0xff (except 0x5e) in Control Escape format. Since these
 octet values are not negotiable, this does not solve the problem
 of receivers which cannot handle all non-control characters.
 Also, since the technique does not affect the 8th bit, this does
 not solve problems for communications links that can send only 7-
 bit characters.

 Note that this specification differs in detail from later
 amendments, such as 3309:1991/Amendment 2 [3]. However, such
 "extended transparency" is applied only by "prior agreement".
 Use of the transparency methods in this specification
 constitute a prior agreement with respect to PPP.

 For compatibility with 3309:1991/Amendment 2, the transmitter
 MAY escape DEL and ACCM equivalents with the 8th (most
 significant) bit set. No change is required in the receiving
 algorithm.

 Following ACCM negotiation, the transmitter SHOULD cease
 escaping DEL.

 However, it is rarely necessary to map all control characters, and
 often it is unnecessary to map any control characters. The
 Configuration Option is used to inform the peer which control
 characters MUST remain mapped when the peer sends them.

 The peer MAY still send any other octets in mapped format, if it
 is necessary because of constraints known to the peer. The peer
 SHOULD Configure-Nak with the logical union of the sets of mapped
 octets, so that when such octets are spuriously introduced they
 can be ignored on receipt.

 A summary of the Async-Control-Character-Map Configuration Option
 format is shown below. The fields are transmitted from left to
 right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+

 RFC-1662

Doc. No. SY_IDD_1085s A-12 Rev. C

 | Type | Length | ACCM
 +-+
 ACCM (cont) |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Type

 2

 Length

 6

 ACCM

 The ACCM field is four octets, and indicates the set of control
 characters to be mapped. The map is sent most significant octet
 first.

 Each numbered bit corresponds to the octet of the same value. If
 the bit is cleared to zero, then that octet need not be mapped.
 If the bit is set to one, then that octet MUST remain mapped. For
 example, if bit 19 is set to zero, then the ASCII control
 character 19 (DC3, Control-S) MAY be sent in the clear.

 Note: The least significant bit of the least significant octet
 (the final octet transmitted) is numbered bit 0, and would map
 to the ASCII control character NUL.

A. Recommended LCP Options

 The following Configurations Options are recommended:

 High Speed links

 Magic Number
 Link Quality Monitoring
 No Address and Control Field Compression
 No Protocol Field Compression

 Low Speed or Asynchronous links

 Async Control Character Map
 Magic Number
 Address and Control Field Compression
 Protocol Field Compression

B. Automatic Recognition of PPP Frames

 It is sometimes desirable to detect PPP frames, for example during a
 login sequence. The following octet sequences all begin valid PPP
 LCP frames:

 7e ff 03 c0 21
 7e ff 7d 23 c0 21
 7e 7d df 7d 23 c0 21

 RFC-1662

Doc. No. SY_IDD_1085s A-13 Rev. C

 Note that the first two forms are not a valid username for Unix.
 However, only the third form generates a correctly checksummed PPP
 frame, whenever 03 and ff are taken as the control characters ETX and
 DEL without regard to parity (they are correct for an even parity
 link) and discarded.

 Many implementations deal with this by putting the interface into
 packet mode when one of the above username patterns are detected
 during login, without examining the initial PPP checksum. The
 initial incoming PPP frame is discarded, but a Configure-Request is
 sent immediately.

C. Fast Frame Check Sequence (FCS) Implementation

 The FCS was originally designed with hardware implementations in
 mind. A serial bit stream is transmitted on the wire, the FCS is
 calculated over the serial data as it goes out, and the complement of
 the resulting FCS is appended to the serial stream, followed by the
 Flag Sequence.

 The receiver has no way of determining that it has finished
 calculating the received FCS until it detects the Flag Sequence.
 Therefore, the FCS was designed so that a particular pattern results
 when the FCS operation passes over the complemented FCS. A good
 frame is indicated by this "good FCS" value.

C.1. FCS table generator

 The following code creates the lookup table used to calculate the
 FCS-16.

 /*
 * Generate a FCS-16 table.
 *
 * Drew D. Perkins at Carnegie Mellon University.
 *
 * Code liberally borrowed from Mohsen Banan and D. Hugh Redelmeier.
 */

 /*
 * The FCS-16 generator polynomial: x**0 + x**5 + x**12 + x**16.
 */
 #define P 0x8408

 main()
 {
 register unsigned int b, v;
 register int i;

 printf("typedef unsigned short u16;\n");
 printf("static u16 fcstab[256] = {");
 for (b = 0; ;) {
 if (b % 8 == 0)
 printf("\n");

 v = b;
 for (i = 8; i--;)

 RFC-1662

Doc. No. SY_IDD_1085s A-14 Rev. C

 v = v & 1 ? (v >> 1) ^ P : v >> 1;

 printf("\t0x%04x", v & 0xFFFF);
 if (++b == 256)
 break;
 printf(",");
 }
 printf("\n};\n");
 }

C.2. 16-bit FCS Computation Method

 The following code provides a table lookup computation for
 calculating the Frame Check Sequence as data arrives at the
 interface. This implementation is based on [7], [8], and [9].

 /*
 * u16 represents an unsigned 16-bit number. Adjust the typedef for
 * your hardware.
 */
 typedef unsigned short u16;

 /*
 * FCS lookup table as calculated by the table generator.
 */
 static u16 fcstab[256] = {
 0x0000, 0x1189, 0x2312, 0x329b, 0x4624, 0x57ad, 0x6536, 0x74bf,
 0x8c48, 0x9dc1, 0xaf5a, 0xbed3, 0xca6c, 0xdbe5, 0xe97e, 0xf8f7,
 0x1081, 0x0108, 0x3393, 0x221a, 0x56a5, 0x472c, 0x75b7, 0x643e,
 0x9cc9, 0x8d40, 0xbfdb, 0xae52, 0xdaed, 0xcb64, 0xf9ff, 0xe876,
 0x2102, 0x308b, 0x0210, 0x1399, 0x6726, 0x76af, 0x4434, 0x55bd,
 0xad4a, 0xbcc3, 0x8e58, 0x9fd1, 0xeb6e, 0xfae7, 0xc87c, 0xd9f5,
 0x3183, 0x200a, 0x1291, 0x0318, 0x77a7, 0x662e, 0x54b5, 0x453c,
 0xbdcb, 0xac42, 0x9ed9, 0x8f50, 0xfbef, 0xea66, 0xd8fd, 0xc974,
 0x4204, 0x538d, 0x6116, 0x709f, 0x0420, 0x15a9, 0x2732, 0x36bb,
 0xce4c, 0xdfc5, 0xed5e, 0xfcd7, 0x8868, 0x99e1, 0xab7a, 0xbaf3,
 0x5285, 0x430c, 0x7197, 0x601e, 0x14a1, 0x0528, 0x37b3, 0x263a,
 0xdecd, 0xcf44, 0xfddf, 0xec56, 0x98e9, 0x8960, 0xbbfb, 0xaa72,
 0x6306, 0x728f, 0x4014, 0x519d, 0x2522, 0x34ab, 0x0630, 0x17b9,
 0xef4e, 0xfec7, 0xcc5c, 0xddd5, 0xa96a, 0xb8e3, 0x8a78, 0x9bf1,
 0x7387, 0x620e, 0x5095, 0x411c, 0x35a3, 0x242a, 0x16b1, 0x0738,
 0xffcf, 0xee46, 0xdcdd, 0xcd54, 0xb9eb, 0xa862, 0x9af9, 0x8b70,
 0x8408, 0x9581, 0xa71a, 0xb693, 0xc22c, 0xd3a5, 0xe13e, 0xf0b7,
 0x0840, 0x19c9, 0x2b52, 0x3adb, 0x4e64, 0x5fed, 0x6d76, 0x7cff,
 0x9489, 0x8500, 0xb79b, 0xa612, 0xd2ad, 0xc324, 0xf1bf, 0xe036,
 0x18c1, 0x0948, 0x3bd3, 0x2a5a, 0x5ee5, 0x4f6c, 0x7df7, 0x6c7e,

 0xa50a, 0xb483, 0x8618, 0x9791, 0xe32e, 0xf2a7, 0xc03c, 0xd1b5,
 0x2942, 0x38cb, 0x0a50, 0x1bd9, 0x6f66, 0x7eef, 0x4c74, 0x5dfd,
 0xb58b, 0xa402, 0x9699, 0x8710, 0xf3af, 0xe226, 0xd0bd, 0xc134,
 0x39c3, 0x284a, 0x1ad1, 0x0b58, 0x7fe7, 0x6e6e, 0x5cf5, 0x4d7c,
 0xc60c, 0xd785, 0xe51e, 0xf497, 0x8028, 0x91a1, 0xa33a, 0xb2b3,
 0x4a44, 0x5bcd, 0x6956, 0x78df, 0x0c60, 0x1de9, 0x2f72, 0x3efb,
 0xd68d, 0xc704, 0xf59f, 0xe416, 0x90a9, 0x8120, 0xb3bb, 0xa232,
 0x5ac5, 0x4b4c, 0x79d7, 0x685e, 0x1ce1, 0x0d68, 0x3ff3, 0x2e7a,
 0xe70e, 0xf687, 0xc41c, 0xd595, 0xa12a, 0xb0a3, 0x8238, 0x93b1,

 RFC-1662

Doc. No. SY_IDD_1085s A-15 Rev. C

 0x6b46, 0x7acf, 0x4854, 0x59dd, 0x2d62, 0x3ceb, 0x0e70, 0x1ff9,
 0xf78f, 0xe606, 0xd49d, 0xc514, 0xb1ab, 0xa022, 0x92b9, 0x8330,
 0x7bc7, 0x6a4e, 0x58d5, 0x495c, 0x3de3, 0x2c6a, 0x1ef1, 0x0f78
 };

 #define PPPINITFCS16 0xffff /* Initial FCS value */
 #define PPPGOODFCS16 0xf0b8 /* Good final FCS value */

 /*
 * Calculate a new fcs given the current fcs and the new data.
 */
 u16 pppfcs16(fcs, cp, len)
 register u16 fcs;
 register unsigned char *cp;
 register int len;
 {
 ASSERT(sizeof (u16) == 2);
 ASSERT(((u16) -1) > 0);
 while (len--)
 fcs = (fcs >> 8) ^ fcstab[(fcs ^ *cp++) & 0xff];

 return (fcs);
 }

 /*
 * How to use the fcs
 */
 tryfcs16(cp, len)
 register unsigned char *cp;
 register int len;
 {
 u16 trialfcs;

 /* add on output */
 trialfcs = pppfcs16(PPPINITFCS16, cp, len);
 trialfcs ^= 0xffff; /* complement */
 cp[len] = (trialfcs & 0x00ff); /* least significant byte
first */
 cp[len+1] = ((trialfcs >> 8) & 0x00ff);

 /* check on input */
 trialfcs = pppfcs16(PPPINITFCS16, cp, len + 2);
 if (trialfcs == PPPGOODFCS16)
 printf("Good FCS\n");
 }

C.3. 32-bit FCS Computation Method

 The following code provides a table lookup computation for
 calculating the 32-bit Frame Check Sequence as data arrives at the
 interface.

 /*
 * The FCS-32 generator polynomial: x**0 + x**1 + x**2 + x**4 + x**5
 * + x**7 + x**8 + x**10 + x**11 + x**12 + x**16
 * + x**22 + x**23 + x**26 + x**32.
 */

 RFC-1662

Doc. No. SY_IDD_1085s A-16 Rev. C

 /*
 * u32 represents an unsigned 32-bit number. Adjust the typedef for
 * your hardware.
 */
 typedef unsigned long u32;

 static u32 fcstab_32[256] =
 {
 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba,
 0x076dc419, 0x706af48f, 0xe963a535, 0x9e6495a3,
 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988,
 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91,
 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de,
 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,
 0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec,
 0x14015c4f, 0x63066cd9, 0xfa0f3d63, 0x8d080df5,
 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,
 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
 0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940,
 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,
 0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116,
 0x21b4f4b5, 0x56b3c423, 0xcfba9599, 0xb8bda50f,
 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d,
 0x76dc4190, 0x01db7106, 0x98d220bc, 0xefd5102a,
 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,
 0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818,
 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,

 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e,
 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457,
 0x65b0d9c6, 0x12b7e950, 0x8bbeb8ea, 0xfcb9887c,
 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2,
 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb,
 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0,
 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9,
 0x5005713c, 0x270241aa, 0xbe0b1010, 0xc90c2086,
 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4,
 0x59b33d17, 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad,
 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a,
 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683,
 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8,
 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,
 0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe,
 0xf762575d, 0x806567cb, 0x196c3671, 0x6e6b06e7,
 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc,
 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,
 0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252,
 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
 0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60,
 0xdf60efc3, 0xa867df55, 0x316e8eef, 0x4669be79,
 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f,
 0xc5ba3bbe, 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04,

 RFC-1662

Doc. No. SY_IDD_1085s A-17 Rev. C

 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,
 0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a,
 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38,
 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21,
 0x86d3d2d4, 0xf1d4e242, 0x68ddb3f8, 0x1fda836e,
 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c,
 0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45,
 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2,
 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db,
 0xaed16a4a, 0xd9d65adc, 0x40df0b66, 0x37d83bf0,
 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6,
 0xbad03605, 0xcdd70693, 0x54de5729, 0x23d967bf,
 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94,
 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d
 };

 #define PPPINITFCS32 0xffffffff /* Initial FCS value */
 #define PPPGOODFCS32 0xdebb20e3 /* Good final FCS value */

 /*
 * Calculate a new FCS given the current FCS and the new data.
 */
 u32 pppfcs32(fcs, cp, len)
 register u32 fcs;
 register unsigned char *cp;
 register int len;
 {
 ASSERT(sizeof (u32) == 4);
 ASSERT(((u32) -1) > 0);
 while (len--)
 fcs = (((fcs) >> 8) ^ fcstab_32[((fcs) ^ (*cp++)) &
0xff]);

 return (fcs);
 }

 /*
 * How to use the fcs
 */
 tryfcs32(cp, len)
 register unsigned char *cp;
 register int len;
 {
 u32 trialfcs;

 /* add on output */
 trialfcs = pppfcs32(PPPINITFCS32, cp, len);
 trialfcs ^= 0xffffffff; /* complement */
 cp[len] = (trialfcs & 0x00ff); /* least significant byte
first */
 cp[len+1] = ((trialfcs >>= 8) & 0x00ff);
 cp[len+2] = ((trialfcs >>= 8) & 0x00ff);
 cp[len+3] = ((trialfcs >> 8) & 0x00ff);

 RFC-1662

Doc. No. SY_IDD_1085s A-18 Rev. C

 /* check on input */
 trialfcs = pppfcs32(PPPINITFCS32, cp, len + 4);
 if (trialfcs == PPPGOODFCS32)
 printf("Good FCS\n");
 }

Security Considerations

 As noted in the Physical Layer Requirements section, the link layer
 might not be informed when the connected state of the physical layer
 has changed. This results in possible security lapses due to over-
 reliance on the integrity and security of switching systems and
 administrations. An insertion attack might be undetected. An
 attacker which is able to spoof the same calling identity might be
 able to avoid link authentication.

References

 [1] Simpson, W., Editor, "The Point-to-Point Protocol (PPP)",
 STD 50, RFC
1661, Daydreamer, July 1994.

 [2] ISO/IEC 3309:1991(E), "Information Technology -
 Telecommunications and information exchange between systems -
 High-level data link control (HDLC) procedures - Frame
 structure", International Organization For Standardization,
 Fourth edition 1991-06-01.

 [3] ISO/IEC 3309:1991/Amd.2:1992(E), "Information Technology -
 Telecommunications and information exchange between systems -
 High-level data link control (HDLC) procedures - Frame
 structure - Amendment 2: Extended transparency options for
 start/stop transmission", International Organization For
 Standardization, 1992-01-15.

 [4] ISO/IEC 4335:1991(E), "Information Technology -
 Telecommunications and information exchange between systems -
 High-level data link control (HDLC) procedures - Elements of
 procedures", International Organization For Standardization,
 Fourth edition 1991-09-15.

 [5] Simpson, W., Editor, "PPP LCP Extensions", RFC 1570,
 Daydreamer, January 1994.

 [6] ANSI X3.4-1977, "American National Standard Code for
 Information Interchange", American National Standards
 Institute, 1977.

 [7] Perez, "Byte-wise CRC Calculations", IEEE Micro, June 1983.

 [8] Morse, G., "Calculating CRC's by Bits and Bytes", Byte,
 September 1986.

 [9] LeVan, J., "A Fast CRC", Byte, November 1987.

 [10] Reynolds, J., and J. Postel, "Assigned Numbers", STD 2, RFC

 RFC-1662

Doc. No. SY_IDD_1085s A-19 Rev. C

 1340, USC/Information Sciences Institute, July 1992.

Acknowledgements

 This document is the product of the Point-to-Point Protocol Working
 Group of the Internet Engineering Task Force (IETF). Comments should
 be submitted to the ietf-
ppp@merit.edu mailing list.

 This specification is based on previous RFCs, where many
 contributions have been acknowleged.

 The 32-bit FCS example code was provided by Karl Fox (Morning Star
 Technologies).

 Special thanks to Morning Star Technologies for providing computing
 resources and network access support for writing this specification.

Chair's Address

 The working group can be contacted via the current chair:

 Fred Baker
 Advanced Computer Communications
 315 Bollay Drive
 Santa Barbara, California 93117

 fbaker@acc.com

Editor's Address

 Questions about this memo can also be directed to:

 William Allen Simpson
 Daydreamer
 Computer Systems Consulting Services
 1384 Fontaine
 Madison Heights, Michigan 48071

